Advanced High Strength Steels for Automotive Lightweighting

Stephen Denner
National Steel Corporation

Existing and Emerging Steels for Automotive Lightweighting

The Advent of Advanced High Strength Steels in Auto

Driving Forces for the use of AHSS are the same in all Regions of the World

- Mass Reduction [Fuel Economy, Eco-Directives]
- Affordability
- Safety Considerations

AISI Survey* of Global Auto. & Steel Companies—Use of AHSS

	N. America	Europe	Japan
Current Models	LIMITED Hang on Parts No BIW No Suspension	LIMITED Hang on Parts Minor BIW No Suspension	LIMITED Hang on Parts Minor BIW No Suspension
Near Term Models < 2 yrs.	LIMITED Hang on Parts No BIW No Suspension	EXPANDED Hang on Parts More BIW Structurals (DP/ TRIP) No Suspension	EXPANDED Hang on Parts More BIW Structural Parts (DP/ TRIP) Suspension Parts
Next Generation Models (~4 yrs.)	LIMITED Hang on Parts No BIW No Suspension	EXPANSION Hang on Parts More BIW Structurals (DP/ TRIP) Suspension Parts	EXPANSION Hang on Parts More BIW Structural Parts (DP/ TRIP) Suspension Parts

The Advent of Advanced High Strength Steels in Auto

- Driving Forces for use of AHSS are the same in all Regions of the World
- New Consideration Globalization of the OEMs
 - Mergers and Worldwide Specifications are Fueling Intense Local Interest in AHSS
 - Drivers for Immediate application of AHSS are affordable safety and affordable lightweighting

Existing and Emerging Steels for Automotive Lightweighting

DOE Expo 4—Washington, D.C. 02-20-01

Transformation Strengthened HSS

Steel Strain Rate Hardening

Static (10⁻³ s⁻¹) **UTS** (**MPa**)

Steels for Automotive Structural Applications

Product	Advantages	Disadvantages	Best Applications
Low C AKDQ	Lowest costExcellent formabilityDQ and DDQ grades	Low strength for applications needing downgauging	Structural parts constrained by stiffness from downgauging
HSLA	FamiliarityGood weldabilityfor HSS	Lowest formability	Rails, cross members, brackets, braces, reinforcements
HS IF and C–Mn	More uniform, less springback Good fatigue	Difficult to weld highest strength grades	Front & rear railsPillarsMulti-joining members
Dual Phase	High strength with excellent formability	High alloy content = poor spot weldability	Crash-sensitive parts - front and rear rails
TRIP	High strength with small strain	High alloy content = poor spot weldability	Structural components limited by buckling - cross members

ULSAB-AVC — Materials Portfolio and Simultaneous Engineering

Preliminary Steel Portfolio

- Commercially Feasible by 2004
- High Strain Rate Data Available

Simultaneous Engineering

- Component Feasibility
- Lightweighting Potential
- Cost reduction Potential

Concluding Comments

- We are witnessing the dawn in a new era of Materials for automotive applications.....the AHSS era
- Advanced High Strength Steels will be widely used globally because they uniquely satisfy all Auto Driving Forces:
 - Mass Reduction [Fuel Economy, Eco-Directives]
 - Affordability
 - Increased Safety Requirements
- Globalization of the Automotive OEMs is accelerating the application of AHSS
- The ULSAB-AVC [UltraLight Steel Auto Body-Advanced Vehicle Concepts Consortium is an Important Demonstration of Optimized use of AHSS